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Decision-making accuracy typically increases through collective in-
tegration of people’s judgments into group decisions, a phenome-
non known as the wisdom of crowds. For simple perceptual
laboratory tasks, classic signal detection theory specifies the upper
limit for collective integration benefits obtained by weighted aver-
aging of people’s confidences, and simple majority voting can often
approximate that limit. Life-critical perceptual decisions often in-
volve searching large image data (e.g., medical, security, and aerial
imagery), but the expected benefits and merits of using different
pooling algorithms are unknown for such tasks. Here, we show that
expected pooling benefits are significantly greater for visual search
than for single-location perceptual tasks and the prediction given by
classic signal detection theory. In addition, we show that simple
majority voting obtains inferior accuracy benefits for visual search
relative to averaging and weighted averaging of observers’ confi-
dences. Analysis of gaze behavior across observers suggests that the
greater collective integration benefits for visual search arise from an
interaction between the foveated properties of the human visual
system (high foveal acuity and low peripheral acuity) and observers’
nonexhaustive search patterns, and can be predicted by an extended
signal detection theory framework with trial to trial sampling from a
varying mixture of high and low target detectabilities across ob-
servers (SDT-MIX). These findings advance our theoretical under-
standing of how to predict and enhance the wisdom of crowds for
real world search tasks and could apply more generally to any
decision-making task for which the minority of group members with
high expertise varies from decision to decision.

group decision rules | signal detection theory | ideal observer analyses |
wisdom of crowds

Groups of insects (1–4), fish (5–7), birds (8–10), mammals
(11–14), and primates (15–18) have been shown to aggre-

gate their individual judgments into group decisions for various
tasks (19, 20). Although some groups seem to have leaders who
make decisions alone on behalf of their groups (17, 21–23), it is
difficult for individuals to outperform even simple aggregations of
the entire group’s individual judgments (4, 7, 9, 10, 19, 24–26).
Perhaps that is why humans often make important decisions as a
group (27–29), even if the only expedient (30, 31) but effective (24,
31–34) group decision mechanism is to use the simple majority
voting rule (35).
Previous human studies have shown that combining people’s

judgments into group decisions can lead to accuracy benefits in
various domains, such as estimation (36–38), detection (34, 39–
44), identification (45–47), and prediction (46, 48–52), a phe-
nomenon known as the wisdom of crowds (53). For artificial tasks,
where perceptual decisions are limited only by noise that is in-
ternal to each observer’s brain (i.e., no external noise), the maxi-
mum wisdom of crowd benefits are specified by the idealized
signal detection theory model that treats observers’ internal
judgments as normally distributed and statistically independent
(SDT-IND) (54). Such idealized environments are uncommon in
real world perceptual tasks for which harnessing the wisdom of the
crowds is of potential high interest.
Perceptual decisions for real world images, like the aerial and

medical images shown in Fig. 1 A and B, are often limited by
properties inherent to the images (56). The target of interest
might be at a vantage point that makes it difficult to notice, other

objects can occlude the target, and noise in the imaging process
can reduce the target’s detectability. All observers viewing the
same images share the same external sources of variability, which
lead to correlations in their judgments and reduce collective
integration benefits (39, 57). Fig. 2 shows a theoretical example
of how the benefits of optimal pooling specified by classic signal
detection theory decrease as the correlation between observers’
judgments increases (41, 58, 59).
Aside from reduced detectability of targets caused by external

noise, real world perceptual tasks often include spatial uncertainty,
requiring observers to scrutinize large visual areas for potential
targets that might not be very visible in the visual periphery.
Spatial uncertainty is the case for many life-critical tasks, such as
doctors searching for lesions in medical images or intelligence
analysts searching for particular objects in satellite and aerial
images. How the search component of perceptual tasks affects the
collective integration benefits is, however, unknown. No theoret-
ical framework within signal detection theory has been developed
to predict the wisdom of crowd benefits for visual search tasks.
Here, we explored and modeled the collective integration ben-

efits for a search task (Fig. 1D) compared with a single-location
task (Fig. 1C) and the prediction given by SDT-IND, which marks
the maximum idealized collective integration benefits for statisti-
cally independent observers in single-location perceptual tasks
(54). We also investigated whether simple majority voting is as
effective for visual search as it is for typical simple perceptual tasks
without spatial uncertainty, like our single-location task that we
ran as a control, where it can approximate the benefits of optimal
pooling (33, 34).
For each task, we evaluated the benefits of combining ob-

servers’ decisions using commonly investigated pooling algorithms.
We also recorded observers’ eye movements to understand how
variations in gaze behavior across observers during visual search
might impact the collective integration benefits. Fixation statistics
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across observers were used to develop an extended signal de-
tection theory framework with trial to trial sampling from a
varying mixture of high and low target detectabilities across ob-
servers (SDT-MIX) that can predict the wisdom of crowd benefits
for visual search.

Results
Twenty observers participated individually in the search task
(Fig. 1D) followed by the single-location task (Fig. 1C) on a
different day. Each task consisted of a yes–no signal detection
task using noise-limited images. Each image (27.72° × 22.33°)
was presented for 2,000 ms, and observers were informed that
the target (a Gabor luminance patch) would be present in 50%
of the images. The strength of the target was greater in the
search task [signal to noise ratio (SNR) = 7.88] than in the
single-location task (SNR = 3.5) to approximately equate ob-
servers’ mean individual performance across tasks. Observers
responded using an eight-point confidence scale, where one was
highest confidence no, four was lowest confidence no, five was
lowest confidence yes, and eight was highest confidence yes. This
response mechanism elicited a binary yes–no decision together
with a confidence rating for signal presence.

Individual Performance. Proportion correct (PC) is the proportion
of trials in which the observer’s binary yes–no decision was cor-
rect. Individual PCs ranged between 0.60 and 0.80 (M = 0.72,
SD = 0.05) for the single-location task, ranged between 0.54 and
0.81 (M = 0.70, SD = 0.07) for the search task, and were not
significantly different across tasks: t (19) = 1.66, P > 0.05 (paired
samples t test). Each observer’s index of detectability (d′) was
estimated using the area under the receiver operating charac-
teristic (AROC) that emerges from his or her confidence ratings
as follows (54, 60, 61): d′=

ffiffiffi
2

p
 Φ−1ðAROCÞ, where Φ−1 is the in-

verse cumulative distribution function of the standard normal

distribution. Individual d′ values ranged between 0.47 and 1.49
(M = 1.02, SD = 0.25) (Table S1) for the single-location task,
ranged between 0.11 and 1.60 (M = 0.93, SD = 0.34) (Table S1)
for the search task, and were not significantly different across
tasks: t (19) = 1.22, P > 0.05 (paired samples t test).

Pooling Algorithms and Signal Detection Theory Predictions. We
generated 500 random groups per group size and computed,
using the same random groups for each task, the expected group
performance of three commonly investigated pooling algorithms:
averaging (AVG), weighted averaging (WAVG), and simple
majority voting (MAJ). These algorithms were compared with
the expected performance of the mean individual observer in the
group (OBS) and the expected group performance predicted
by SDT-IND or by classic signal detection theory for observer
internal responses that are normally distributed and partially
correlated (SDT-CORR).
OBS. For any given group, PCOBS and d′OBS are the mean indi-
vidual PC and mean individual d′ of the group, respectively.
MAJ algorithm. For any given group with an odd number of ob-
servers, the binary group decision of MAJ is no when the ma-
jority of the group’s individual confidence ratings are between
one and four and yes when the majority of the group’s individual
confidence ratings are between five and eight. Expected PCMAJ
and d′MAJ for each group size were computed using the MAJ
algorithm’s binary group decisions (Materials and Methods).
AVG algorithm. For any given group and trial, the AVG algorithm
compares the group’s average confidence rating (̂x) with a group
decision criterion (c) (SI Materials and Methods). The binary group
decision of AVG is no when x̂< c and yes when x̂> c. Expected
PCAVG and d′AVG for each group size were computed using the
AVG algorithm’s binary group decisions (Materials and Methods).
WAVG algorithm. The WAVG algorithm compares the group’s
weighted average confidence rating (̂x=

P
wixi) with a group de-

cision criterion (c), where subscript i represents the ith group
member. For any given group and trial, and using a leave one trial
out procedure, we assigned weights (w) taking into account the
covariance between the group’s individual confidence ratings and
how well each group member discriminates between signal and
noise trials (SI Materials and Methods). The binary group decision
of WAVG is no when x̂< c and yes when x̂> c. Expected PCWAVG
and d′WAVG for each group size were computed using the WAVG
algorithm’s binary group decisions (Materials and Methods).

A B

C D

Fig. 1. Examples of perceptual tasks. (A) Real world example of an aerial
image. Analysts from the National Photographic Interpretation Center de-
termined that there were medium-range ballistic missiles in this re-
connaissance photo that set off the Cuban missile crisis. Image courtesy of
National Museum of the US Air Force. (B) Real world example of medical
images. Radiologists would have to determine if there are cancerous lesions
in these mammograms. Reprinted with permission from ref. 55; https://
creativecommons.org/licenses/by-nc/3.0/). (C) Schematic of our single-location
task. Each observer responded on an eight-point confidence scale whether
there was a Gabor luminance patch (SNR = 3.5) in the middle of the black
box. (D) Schematic of our search task. Each observer responded on an eight-
point confidence scale whether there was a Gabor luminance patch (SNR =
7.88) anywhere in the image.
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Fig. 2. Benefits of optimal pooling specified by classic signal detection
theory. In this theoretical example, observers’ internal judgments are nor-
mally distributed, and their individual d′ values = 1. The black curve shows
the d′ obtained from optimal pooling as a function of group size when
observers’ internal judgments are statistically independent (see SDT-IND).
The dashed green curves show the same when observers’ internal judg-
ments are correlated (see SDT-CORR). The d′ obtained from optimal pooling
decreases as the correlation (r) between observers’ internal judgments in-
creases.
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SDT-IND and SDT-CORR predictions. For any given group of m ob-
servers, the group performances predicted by SDT-IND and SDT-

CORR are computed as follows (54, 59): d′SDT-IND =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðd′i Þ2

q
,

where subscript i represents the ith group member, and d′SDT-CORR =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðd′Þm=ð1− rÞ+ ðd′Þ2m=ð1+ ðm− 1ÞrÞ

q
, where d′ and Varðd′Þ

are the mean and variance of the group’s individual d′ values, and
r represents the correlation between the group’s individual confi-
dence ratings. Given each predicted d′SDT, we computed the
PCSDT-IND that would be predicted for an optimally placed crite-
rion at d′SDT-IND=2 and the PCSDT-CORR that would be predicted
for an optimally placed criterion at d′SDT-CORR=2 as follows (54,
61): PCSDT =Φðd′SDT=2Þ, where Φ is the cumulative distribution
function of the standard normal distribution. [Note that the PC
predicted for an optimal criterion placed halfway between equal
variance signal and noise distributions is Φðd′=2Þ for yes–no tasks
that have 50% signal prevalence vs. Φðd′= ffiffiffi

2
p Þ for two-alternative

forced choice tasks, although both kinds of tasks have the same
optimal criterion at d′/2.]

Group Performance. Fig. 3 shows expected d′ and PC as a function
of group size for each task. Comparison of d′ values and PCs
across algorithms and tasks suggests (i) that WAVG and AVG
achieve closer group performance to the SDT-IND prediction in
the search task than in the single-location task and (ii) that MAJ
underperforms WAVG and AVG in the search task but not in the
single-location task. To evaluate algorithms and tasks controlling
for residual differences in task difficulty and individual perfor-
mance, we computed relative efficiency metrics as defined below.
Observer efficiency is a well-known metric that quantifies a

human observer’s detection sensitivity with respect to an ideal
detector by taking the squared ratio between human and ideal
contrast thresholds or d′ values (62, 63). Similarly, group effi-
ciency has been used to quantify group performance with respect
to an ideal detector (64) or ideal group performance (25) by
taking the squared ratio between the relevant contrast thresholds
or d′ values. Here, we are interested in comparing the group

performance of each algorithm relative to the other algorithms,
predictions, and mean individual performance. Hence, we define
an algorithm’s relative efficiency as the squared ratio between
the d′ of the algorithm in question and the d′ of the comparison
of interest (65, 66). For example, the efficiency of MAJ relative
to WAVG is equivalent to ðd′MAJ=d′WAVGÞ2. [Comparisons using
PC ratios are problematic because of the nonlinear compressive
relationship between PC and d′ (e.g., doubling or tripling the
SNR of a stimulus does not double or triple the consequent
PC). This nonlinear relationship means that a constant source
of suboptimality across tasks, such as incomplete integration of
information across observers, would lead to a constant d′ ratio
but would not lead to a constant PC ratio (65).]
Fig. 4 shows the expected efficiency of each algorithm as a

function of group size for each task relative to the mean individual
OBS in the group (Fig. 4 B and D) and relative to the SDT-IND
prediction (Fig. 4 A and C). Relative efficiency > 1 indicates that
the algorithm in question achieves higher performance than the
comparison of interest. Relative efficiency < 1 indicates that the
algorithm in question achieves lower performance than the com-
parison of interest. To follow, we report the statistical analyses of
the relative efficiency metrics using bootstrap resampling methods
(SI Materials and Methods) (67).
Comparison between algorithms within each task.

Single-location task. Fig. 4 A and B shows little difference in rel-
ative efficiency for the single-location task between the AVG,
WAVG, and MAJ algorithms. The efficiency of each algorithm
relative to the mean individual OBS in the group (Fig. 4B) is
significantly higher than one for all group sizes that we tested (all
P values < 0.001; bootstrap resampling), and the efficiency of each
algorithm relative to SDT-IND (Fig. 4A) is significantly lower than
one for all group sizes that we tested (all P values < 0.005;
bootstrap resampling). A direct comparison between algorithms
shows that the efficiency of MAJ relative to AVG (ranging be-
tween 0.99 and 1.05) and relative to WAVG (ranging between
0.92 and 0.99) is not significantly different from one for any group
size that we tested (vs. AVG: all P values > 0.39; vs. WAVG:
0.13 > all P values ≥ 0.05; bootstrap resampling), which indicates
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Fig. 3. Performance. (A and C) The d′ values and (B and D) the PCs of each
pooling algorithm (AVG, WAVG, and MAJ), classic signal detection theory
prediction (SDT-IND and SDT-CORR), and OBS are plotted as a function of
group size for each task. The text has details regarding WAVG Shuffled and
why we do not show WAVG Shuffled or SDT-CORR for (C and D) the search
task. Data points for group size = 1 mark mean individual performance (n =
20), and error bars mark ±SEM. Data points for all other group sizes were
computed based on 500 random groups per group size using the same random
groups for both tasks, and error bars mark bootstrap 68.27% confidence in-
tervals to be equivalent to the percentile of ±SD of a normal distribution.
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Fig. 4. Relative efficiency. The efficiency of each pooling algorithm is plotted
as a function of group size for each task relative to (A and C) the SDT-IND
prediction and (B and D) the mean individual OBS in the group. Note that the
algorithms have similar relative efficiency for (A and B) the single-location task
but that AVG and WAVG have higher relative efficiency than MAJ for (C and
D) the search task. Also note that each algorithm’s relative efficiency is gen-
erally higher for (C and D) the search task than for (A and B) the single-location
task. Fig. 3 has a summary of how we computed data points and error bars.
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that the benefits obtained by MAJ are similar to AVG and can
approximate the benefits obtained by WAVG in this task.
The underperformance of collective integration relative to the

SDT-IND prediction in this task is consistent with the correla-
tion between observers’ judgments caused by the external noise
in each image that was common for all observers. If the classic
signal detection theory prediction includes the mean estimated
correlation between observers’ confidence ratings (r = 0.26),
then the prediction for correlated observers, SDT-CORR,
closely matches WAVG as shown in Fig. 3 A and B. Further-
more, if we shuffle the trials across observers to artificially
remove the correlation between observers’ confidence ratings,
then the performance of weighted averaging for shuffled trials
(WAVG Shuffled) should correspond to the idealized signal
detection theory prediction for statistically independent ob-
servers. Indeed, Fig. 3 A and B shows that WAVG Shuffled
closely matches SDT-IND. (We do not show SDT-CORR or
WAVG Shuffled for the search task, because they do not match
WAVG and SDT-IND, respectively, in that task such as they do
in the single-location task, which suggests the inadequacy of us-
ing classic signal detection theory to model the collective integration
benefits of the search task.)
These results for the single-location task serve to show (i) that

classic signal detection theory is a valid predictive model for the
collective integration benefits of this simple perceptual task and
(ii) that simple majority voting can approximate the benefits of
weighted averaging and the upper limit set by classic signal de-
tection theory for this simple perceptual task.

Search task. Fig. 4 C and D shows considerable difference in
relative efficiency for the search task between the MAJ algorithm
and the AVG and WAVG algorithms. Although the efficiency of
each algorithm relative to the mean individual OBS in the group
(Fig. 4D) is significantly higher than one for all group sizes that we
tested (all P values < 0.001; bootstrap resampling), direct com-
parison between algorithms shows that the efficiency of MAJ
relative to AVG (ranging between 0.84 and 0.87) and relative to
WAVG (ranging between 0.76 and 0.82) is significantly lower than
one for all group sizes that we tested (vs. AVG: all P values < 0.03;
vs. WAVG: all P values < 0.002; bootstrap resampling). Thus,
although all algorithms achieve collective integration benefits,
MAJ underperforms both AVG and WAVG in this task.
In addition, although the efficiency of MAJ relative to SDT-

IND (Fig. 4C) is significantly lower than one for all group sizes
that we tested (all P values < 0.001; bootstrap resampling), the
efficiency of WAVG relative to SDT-IND is significantly higher
than one for groups of two (P < 0.03; bootstrap resampling) and is
not significantly different from one for groups of three and four
[not significant (ns); bootstrap resampling] but is significantly
lower than one for groups of five through nine (all P values < 0.05;
bootstrap resampling). Similarly, the efficiency of AVG relative to
SDT-IND is not significantly different from one for groups of two
and three (ns; bootstrap resampling) but is significantly lower than
one for groups of four through nine (all P values < 0.006; bootstrap
resampling). Thus, although MAJ underperforms the SDT-IND pre-
diction for all group sizes in this task, AVG and WAVG can approach
the prediction of SDT-IND in this task, at least for small group sizes.
These results for the search task show (i) that averaging and

weighted averaging can approach the prediction of SDT-IND for
small group sizes in this task (unlike in the single-location task,
where the external noise in our images induces correlations be-
tween observers’ judgments, which guarantees that no pooling
algorithm can approach the idealized prediction of SDT-IND for
any group size in that task) and (ii) that simple majority voting
does not approximate the higher benefits of averaging and
weighted averaging in this task. In Explaining why MAJ under-
performs AVG and WAVG in the search task, we explain why
simple majority voting underperforms averaging and weighted
averaging in the search task.
Comparison across tasks. Comparison of the algorithms’ higher
relative efficiencies for the search task (Fig. 4 C and D) with the
algorithms’ lower relative efficiencies for the single-location task

(Fig. 4 A and B) suggests that collective integration benefits are
greater for the search task than for the single-location task.
The efficiency of AVG and WAVG relative to the SDT-IND

prediction (Fig. 4 A and C) and relative to the mean individual
OBS in the group (Fig. 4 B and D) is significantly higher in the
search task (Fig. 4 C and D) than in the single-location task (Fig. 4
A and B) for all group sizes that we tested (all P values < 0.001;
bootstrap resampling). These results indicate that the benefits of
AVG and WAVG are unequivocally greater for the search task
than for the single-location task. The efficiency of MAJ relative to
the SDT-IND prediction (Fig. 4 A and C) and relative to the mean
individual OBS in the group (Fig. 4 B andD) is significantly higher
in the search task (Fig. 4 C and D) than in the single-location task
(Fig. 4 A and B) for groups of five (all P values < 0.05), seven (all
P values < 0.02), and nine (all P values < 0.01) but is not signif-
icantly different across tasks for groups of three (ns; bootstrap
resampling). These results indicate that, for a subset of group
sizes, the benefits of MAJ can be higher for the search task than
for the single-location task (but not the other way around). Finally,
the efficiency of MAJ relative to AVG and WAVG is significantly
lower in the search task (ranging between 0.76 and 0.87) than in
the single-location task (ranging between 0.92 and 1.05) for groups
of three (all P values < 0.005), five (all P values < 0.02), and seven
(all P values < 0.04) but is not significantly different across tasks
for groups of nine (ns; bootstrap resampling).
These results for the comparison of relative efficiencies across

tasks indicate that averaging, weighted averaging, and to some
extent, simple majority voting can attain greater benefits in the
search task than in the single-location task. In Explaining why
the search task obtains greater collective integration benefits rel-
ative to the single-location task, we explain why the search task
obtains greater collective integration benefits relative to the
single-location task.

Analysis of Gaze Behavior During Visual Search.We hypothesize that
the dissociations across algorithms and tasks described above
arise from an interaction between the foveated properties of the
human visual system (high acuity at fixation and low acuity in the
periphery) and observers’ nonexhaustive search patterns. Be-
cause the target is of medium spatial frequency (six cycles per
1°), its detectability degrades rapidly with retinal eccentricity
(68). This low target detectability using peripheral vision plays a
role in the search task, where the target could be viewed foveally
or peripherally, as opposed to the single-location task, where the
target is always viewed foveally.
For our particular search task, fixating near the target increases

the probability of detecting it as shown by observers’ individual hit
rates, which were significantly higher when they foveated near the
target (M = 0.88, SD = 0.08) than when they did not [M = 0.32,
SD = 0.09, t (19) = 22.94, P < 0.0001 (paired samples t test)] (left-
most data points in Fig. 5B). Observers in our task averaged
5.7 fixations per trial and did not foveate near the target on every
trial (Fig. 5C shows examples of fixation paths). The percentage of
signal trials that each observer foveated near the target ranged
between 23.6 and 69.6% (M = 49.6%, SD = 12.4%) (Table S1),
and the pairwise correlation between observers as to whether they
foveated near the target ranged between −0.02 and 0.43 (M =
0.21, SD = 0.08) (Fig. S1). We reasoned that, if variations in gaze
behavior (and consequent effects on target detectability) give rise
to the greater collective integration benefits for visual search, then
we should see different levels of collective integration benefits in
the search task for different patterns of gaze behavior across
group members.
Using observers’ gaze position data, we partitioned the signal

trials of the search task into four categories based on the pro-
portion (p) of observers in the group who foveated within 2°
from the center of the target: all (p = 1), a majority (0.5 < p < 1),
a minority (0 < p < 0.5), or none (p = 0). For reference, Fig. 5A
shows each algorithm’s hit rate across all groups and trials,
irrespective of the proportion of observers in the group who
foveated near the target. Fig. 5B shows that, when all observers
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in the group foveated near the target (p = 1), the hit rate was
close to one for all algorithms regardless of group size, and the
resulting efficiency relative to SDT-IND was higher than 3.30 for
all algorithms regardless of group size (Fig. S3). Conversely and
as shown in Fig. 5B, when none of the observers in the group
foveated near the target (p = 0), the hit rate ranged between
0.04 and 0.23 depending on the algorithm and group size, and
the efficiency relative to SDT-IND was close to 0 for all algo-
rithms regardless of group size (Fig. S3).
Most signal trials were ones in which a majority (but not all) or

minority of observers in the group foveated near the target. As
shown in Fig. 5B, when a majority of observers in the group
foveated near the target (0.5 < p < 1), the hit rate ranged between
0.85 and 0.97 depending on the algorithm and group size, and the
resulting efficiency relative to SDT-IND ranged between 1.33 and
2.17 depending on the algorithm and group size (Fig. S3). Finally
and as shown in Fig. 5B, when a minority of observers in the group
foveated near the target (0 < p < 0.5), the hit rate ranged between
0.44 and 0.67 depending on the algorithm and group size, and the
efficiency relative to SDT-IND ranged between 0.36 and 0.92
depending on the algorithm and group size (Fig. S3).
The aggregate collective integration benefits for the search task

are a combination of the benefits across all of the different trial
types mentioned above, which include a large percentage of signal
trials (50% regardless of group size) that have very high benefits
when all or a majority of observers in the group foveated near the
target. These trials more than compensate for the smaller per-
centage of signal trials (5–20% depending on group size) that
do not have any benefits (efficiency relative to SDT-IND ∼0)
when none of the observers in the group foveated near the target.

Additionally, although the remaining percentage of signal trials
(30–45% depending on group size) has modest benefits when a
minority of observers in the group foveated near the target, the
efficiency for those trials relative to SDT-IND, which ranged be-
tween 0.36 and 0.92 depending on the algorithm and group size
(Fig. S3), is comparable with that in the single-location task, where
efficiency relative to SDT-IND for the same group sizes ranged
between 0.36 and 0.73 depending on the algorithm and group size
(Fig. 4A).
Explaining why the search task obtains greater collective integration
benefits relative to the single-location task. The breakdown of bene-
fits described above, which in the aggregate, exceed the collective
integration benefits for the single-location task, is an emergent
statistical property of the search task, where observer confidence
ratings for each signal trial are sampled from a varying mixture of
high and low target detectabilities across observers: high de-
tectability for those who viewed the target foveally on that trial
(mean d′ = 1.96) (Table S1) and low detectability for those who
only viewed the target peripherally on that trial (mean d′ = 0.25)
(Table S1). Critically, our observers were not perfectly correlated
as to whether they foveated near the target (mean pairwise
correlation = 0.21) (Fig. S1). Thus, even worse-performing group
members could contribute to increasing the algorithm’s group
performance, because they sometimes happen to foveate near
the target on trials that some of the better-performing group
members do not.
For example, if we remove the two worst-performing individ-

uals from each group of five to create artificial groups of three,
then the respective d′ values of AVG, WAVG, and MAJ de-
crease from 2.07, 2.17, and 1.90 for the original groups of five
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Fig. 5. Hit rate breakdown for the search task. (A) Overall hit rate (across all signal trials) and overall false alarm rate (across all noise trials) of each algorithm
are plotted as a function of group size for the search task. (B) Each algorithm’s hit rate is broken down for each group size as a function of the proportion
(p) of observers in the group who foveated near the target: all (p = 1), a majority (0.5 < p < 1), a minority (0 < p < 0.5), or none (p = 0). The pie charts show the
percentage of signal trials across all 500 random groups that belong to each category for each group size. (C) Schematics of actual gaze paths for three
observers during four different trials. From top to bottom, the panels show respective examples when all, a majority, a minority, and none of the observers in
the group foveated within 2° from the center of the target. Fig. 3 has a summary of how we computed data points and error bars.
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(Fig. 3C) to 1.92, 2.00, and 1.78 for the artificial groups of three
that omit the contributions of the two worst-performing indi-
viduals from each group (as measured by their individual d′
values for the search task) (Table S1). The resulting efficiencies
of these artificial groups of three relative to the original groups
of five are 0.86, 0.85, and 0.88 for the AVG, WAVG, and MAJ
algorithms, respectively. These relative efficiency values can be
compared with an equivalent analysis for the single-location task,
where the efficiencies of the artificial groups of three that omit
the contributions of the two worst-performing individuals from
each group (as measured by their individual d′ values for the
single-location task) (Table S1) relative to the original groups of
five are 0.95, 0.93, and 0.97 for the AVG, WAVG, and MAJ
algorithms, respectively. These relative efficiency values for the
single-location task are closer to one and higher than for the
search task, suggesting lower contributions from low-performing
group members for the single-location task.
The intuition for why the search task obtains greater collective

integration benefits is that many signal trials end up having a
varying subset of observers who happen to view the target
foveally with relatively high target detectability, because the
target (peak contrast = 18%; SNR = 7.88) is easy to detect when
using foveal vision (but very difficult to detect when using pe-
ripheral vision). This situation is in contrast to the single-location
task, where the target is somewhat difficult to detect when using
foveal vision (peak contrast = 8%; SNR = 3.5), but all observers
always viewed it foveally, which means that the observer confi-
dence ratings for each trial are sampled from a constant set of
(medium) target detectabilities across observers. Additionally,
although some targets in the single-location task might be easier
to detect than others, that increased foveal detectability (because
of randomly lower noise) is common for all observers. Hence, it
is never the case that some individuals in the single-location task
get to process the target for a particular trial with incidentally
higher than usual target detectability whereas others do not.
Therefore, although there are substantial wisdom of crowd bene-
fits for the single-location task, those benefits are surpassed in the
search task, because it engenders trial to trial sampling from a
varying mixture of high and low target detectabilities across ob-
servers contingent on viewing the target foveally vs. peripherally.
Also, as shown above, even low-performing group members could
contribute to increasing the algorithm’s group performance in the
search task.
Explaining why MAJ underperforms AVG and WAVG in the search task. We
showed that the efficiency of MAJ relative to AVG and relative to
WAVG is significantly lower than one in the search task for all
group sizes that we tested. The disadvantage of MAJ in this task
cannot be explained in terms of WAVG’s differential weighting
parameter that generally assigns more weight to those individuals
who foveated near the target more often and had higher d′ values
(Table S1), because AVG does not have this differential weighting
parameter and still outperforms MAJ in this task.
Fig. 5B suggests that the disadvantage of MAJ in this task is

driven in large part by the higher hit rate that AVG and WAVG
achieve over MAJ when a minority of observers in the group
foveated near the target (0 < p < 0.5). This hit rate divergence
occurs, because some of those individuals in the minority of the
group who happened to foveate near the target on a particular
trial often had high-enough confidence ratings to push the
group’s average and weighted average ratings above AVG’s and
WAVG’s respective group decision criterion, even if the majority
of observers in the group who did not happen to foveate near the
target on that particular trial said no (Fig. S4 shows the confi-
dence rating frequencies for each task).
Fig. 6 illustrates this phenomenon by analyzing, for each task,

the distribution of confidence ratings across group members for
the subset of trials in which the AVG algorithm reaches a yes
decision, whereas the MAJ algorithm reaches a no decision. Using
groups of seven as an example, Fig. 6 shows that, for this subset of
trials, there were many more signal trials in the search task (green
bars in Fig. 6, Right) than in the single-location task (green bars in

Fig. 6, Left) for which there were one or more individuals in the
group who chose the highest confidence rating for signal presence
(Fig. S5 shows similar results comparing WAVG with MAJ).
These results show that only the search task, which engenders

a trial to trial sampling from a varying mixture of high and low
target detectabilities across observers, obtains a considerable
number of signal trials where a random majority of observers in
the group incorrectly says that the target was absent (because
they only processed the target with low peripheral detectability
on that particular trial), whereas the remaining minority of ob-
servers in the group correctly says that the target was present
with very high confidence (because they happened to process the
target with high foveal detectability on that particular trial). And
unlike the majority voting procedure that does not make use
of how confident each observer is, the averaging procedure
(whether weighted or not) is able to exploit the very high con-
fidence that is often provided by those individuals in the group
who happened to process the target with high foveal detectability
on that particular trial (green bars in Fig. S4, Right).

Extended Signal Detection Theory Framework. We hypothesized
above that the greater collective integration benefits for visual
search and the higher benefits of AVG and WAVG over MAJ for
visual search arise from having a varying mixture of target de-
tectabilities across observers, where each observer has high vs. low
target detectability on each signal trial contingent on viewing the
target foveally vs. peripherally. If this hypothesis for visual search
is correct, then we should be able to implement an extended signal
detection theory framework (SDT-MIX) that generates collective
integration benefits that resemble the empirically measured ben-
efits of AVG, WAVG, and MAJ in our search task.
Fig. 7, Left shows a sketch of the extended SDT-MIX frame-

work applied to our search task. The framework assumes that, for
each signal trial, each individual has q% chance of processing the
target foveally with his or her high target detectability (high d′)
and 100 – q% chance of processing the target peripherally with his
or her low target detectability (low d′). Not shown in the sketch
but assumed by the SDT-MIX framework is that individuals can
be correlated as to whether they process the target foveally vs.
peripherally (Fig. S1).
We simulated SDT-MIX using the following range of input

values for 20 theoretical individuals to resemble our empirical
observers in the search task (Fig. S1 and Table S1, left side show
detailed input values); 20 individual high d′ values for foveal
target processing ranged between 0.76 and 2.50, 20 individual
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Fig. 6. Subset of trials in which the AVG algorithm reaches a yes decision,
whereas the MAJ algorithm reaches a no decision. Histogram for the num-
ber of individuals in the group who chose the highest confidence rating for
signal presence across trials in which the AVG algorithm reaches a yes de-
cision, whereas the MAJ algorithm reaches a no decision. The histograms
show the average of 500 random groups using the same random groups for
both tasks, and the error bars mark bootstrap 68.27% confidence intervals.
This figure shows results for groups of seven, and the results are similar for
groups of three, five, and nine. For this subset of trials, there were many
more signal trials in the search task than in the single-location task for which
there was one or more observers in the group who chose the highest rating
for signal presence (eight on the eight-point confidence scale). Fig. S5 shows
similar results comparing WAVG with MAJ.
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low d′ values for peripheral target processing ranged between −0.09
and 0.59, 20 individual q% chances on each signal trial of getting
high d′ instead of low d′ ranged between 23.6 and 69.6%, and
190 pairwise correlations between 20 individuals in getting high d′
vs. low d′ ranged between −0.02 and 0.43. (SI Materials and
Methods has additional simulation details, and Fig. S2A shows a
theoretical example of how collective integration benefits pre-
dicted by the SDT-MIX framework would decrease with increased
correlation between individuals in getting high d′ vs. low d′.)
Them group members’ individual judgments for each noise trial

were sampled as Gaussian random variables from a common noise
distribution for all individuals. However, the m group members’
individual judgments for each signal trial were sampled as
Gaussian random variables from one of 2m possible combinations
of signal distributions across individuals, depending on which in-
dividuals got high d′ vs. low d′ for that trial through correlated
Bernoulli sampling processes (69).
Fig. 7, Right shows the simulation results of the SDT-MIX

framework applied to our search task (dashed lines in Fig. 7,
Right) together with the empirical results of our search task
(circles in Fig. 7, Right). The close match (with no fitting pa-
rameters) between the simulated and empirical results of the
AVG, WAVG, and MAJ algorithms suggests that the greater
collective integration benefits for the search task and the higher
benefits of AVG and WAVG over MAJ for the search task arise,
as discussed above, from statistical principles related to the trial
to trial sampling from a varying mixture of high and low target
detectabilities across observers as modeled by SDT-MIX (as
opposed to the trial to trial sampling from a constant set of target
detectabilities across observers in the single-location task).
We note that the WAVG algorithm outperformed the SDT-

IND prediction in our search task but only for groups of two where
the empirical efficiency of WAVG relative to SDT-IND was sig-
nificantly higher than one with P < 0.03 (bootstrap resampling).
Although our simulation of the SDT-MIX framework did not
obtain this qualitative result of WAVG outperforming SDT-IND
for any group size (purple dashed line in Fig. S6, Upper), we show
in SI Materials and Methods that WAVG could potentially out-
perform the SDT-IND prediction for many group sizes for cir-
cumstances with very low interobserver correlations in getting high
d′ vs. low d′ (Fig. S2A). The SDT-MIX simulation applied to our
search task used interobserver correlations in getting high d′ vs.
low d′ to resemble the empirically estimated pairwise correlations
between observers in foveating near the target (Fig. S1). Those

estimates assume that high detectability processing occurs when
observers foveate within 2° from the center of the target. Using a
stricter visual angle threshold would reduce the estimated pairwise
correlations between observers in foveating near the target, but we
used a 2° threshold because of limitations with eye-tracking pre-
cision. Thus, a possible explanation for why the SDT-MIX simu-
lation of our search task did not qualitatively obtain the empirical
aspect of WAVG outperforming SDT-IND for groups of two
might be that we overestimated how correlated observers were in
processing the target foveally with high detectability vs. peripher-
ally with low detectability.

Discussion
How to Predict the Wisdom of Crowd Benefits for Visual Search. We
showed that, for single-location perceptual tasks, classic signal
detection theory (54, 59) well-predicts collective integration ben-
efits, because observer judgments for each image are elicited from
a constant set of target detectabilities across observers (34). For
visual search tasks, however, we empirically showed that classic
signal detection theory is not a valid model to predict collective
integration benefits. We hypothesized that the greater collective
integration benefits for visual search arise from an interaction
between the foveated nature of the human visual system and ob-
servers’ nonexhaustive search patterns. This interaction would give
rise to a situation in which, from trial to trial, a varying observer or
subset of observers would fixate near the target and process it with
high foveal detectability, whereas the remaining observers would
process it with low peripheral detectability. This hypothesis was
supported by the empirical variation in group performance with
observers’ gaze position data, and by the close match between the
empirical pooling benefits for the search task and the simulated
pooling benefits obtained using the STD-MIX framework.
Our theory makes specific predictions that could potentially be

tested in future studies. For example, the dissociation in collec-
tive integration benefits between the single-location vs. search
tasks should decrease for targets that are more visible in the
visual periphery. For targets that are equally detectable across
the visual field, the dissociation across tasks should vanish alto-
gether, and classic signal detection theory should well-predict the
collective integration benefits for both tasks. Similarly, if ob-
servers are given unlimited time and instructed to thoroughly
fixate all image regions, then the dissociation in collective in-
tegration benefits across tasks should once again vanish.

Simple Majority Voting Obtains Inferior Wisdom of Crowd Benefits for
Visual Search. We showed that, for the single-location task, simple
majority voting can approximate the upper limit for collective
integration benefits obtained by weighted averaging of observers’
confidences as specified by classic signal detection theory (54, 59).
For the search task, however, we empirically showed and theo-
retically modeled using the extended SDT-MIX framework that
simple majority voting does not approximate the higher benefits of
averaging and weighted averaging of observers’ confidences.
This finding that simple majority voting obtains inferior accuracy

benefits for visual search relative to averaging and weighted aver-
aging could be relevant for real world search tasks, because human
groups have a propensity to use a majority voting procedure to
reach their joint decisions in various domains (27, 28, 31, 33, 34).
For many real world perceptual tasks that involve a search com-
ponent, it might be appropriate to abandon the easy majority voting
procedure in favor of a more demanding averaging of confidences
procedure to obtain higher collective integration benefits.
We previously showed that human groups in certain circum-

stances can infer that different observers might have access to
different amounts of information at different times and that they
can dynamically adapt their joint decision algorithms away from
simple majority voting to improve their joint decision accuracies
(34). Others have shown that human groups can derive benefits
by altering their individual decision strategies when searching
for targets collaboratively (70–72). Future studies exploring
collective wisdom for real world search tasks can explore
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Fig. 7. Extended SDT-MIX framework and simulation results for the search
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whether groups adapt their joint decision algorithms to use more
demanding averaging or weighted averaging procedures that
obtain higher joint decision accuracies than the default majority
voting procedure.

Applicability of Our Findings to Real World Search Tasks. Many
studies have shown benefits in combining expert judgments and/
or crowdsourcing nonexpert judgments for a variety of disci-
plines, including radiology (41, 42, 44), ophthalmology (73, 74),
pathology (44, 75, 76), and clinical predictions (52). However,
few studies (41, 42, 77) have compared the benefits of various
pooling algorithms with those predicted by signal detection
theory. Here, we experimentally showed a visual search task for
which the collective integration benefits depart from classic sig-
nal detection theory predictions and are consistent instead with
our extended SDT-MIX framework. The applicability of our
findings to real world search tasks requires two conditions: (i) a
detectability for the target that degrades rapidly with retinal
eccentricity (78) and (ii) individuals not thoroughly fixating all
image regions (79, 80).
In our search task, these conditions were guaranteed by using a

limited viewing time (2,000 ms) and a midfrequency Gabor target
(six cycles per 1°) that degrades rapidly in detectability with retinal
eccentricity (68). Although studies with realistic targets in natu-
ralistic scenes (81) and medical images (82) have shown steep
degradations in detectability with retinal eccentricity (thus meet-
ing the first condition), real world searches can have unlimited
viewing time, allowing observers to thoroughly fixate all image
regions if desired. This discrepancy in viewing time might bring
into question the applicability of our findings to real world search
tasks, and we agree that thoroughly fixating all image regions is
possible, if desired, for planar medical imaging or baggage
screening (which consist of one X-ray or a small number of X-rays
per case), so that the benefits of collective integration could be
modeled correctly using classic signal detection theory in agree-
ment with previous studies (41, 42, 77).
However, many life-critical search tasks involve large datasets,

preventing observers from realistically scrutinizing all image re-
gions (79, 80). Radiologists are increasingly using 3D volumetric
imaging consisting of a large number of X-ray slices per scan: 64–
128 slices for computed tomography (83) and 50–90 slices for
digital breast tomosynthesis (DBT) (84–86). Based on clinical
reading times of 2–3 min per case (84, 85) and 250–350 ms per
fixation, radiologists would average no more than 14.4 fixations
per slice when inspecting one DBT scan (3 min of 250 ms per
fixation across 50 slices for one breast) and possibly as little as
1.9 fixations per slice when inspecting a separate DBT scan for
each breast (2 min of 350 ms per fixation across 180 total slices
for both breasts). Similarly, the increasing amounts of surveil-
lance photographs taken across space and time by unmanned
aerial vehicles and ever-cheaper quadcopters might not permit
geospatial analysts to thoroughly fixate all aerial image regions
for a case.
Our approach involves combining observer confidence ratings

about signal presence without any localization judgments. This
focus on confidence ratings is often the case for double-reading
breast cancer screening programs, for example, where localization
judgments are not generally required to determine whether pa-
tients should be recalled for additional tests. Furthermore, many
European and Australian screening centers use two independent
readers for each case, with arbitration by a third reader when the
first two are discordant. The final decision whether the patient
should be recalled typically follows the majority voting rule with-
out explicit consideration of any localization information. How-
ever, in many other applications, observers might be asked to mark
the possible location of the target. Such localization judgments
could potentially guide how to combine confidence ratings across
observers to improve performance. Finally, in circumstances where
observers have a second viewing of the images or a discussion, lo-
calization judgments from observers with high confidence that the
target is present could lead others who originally missed the target

to revise their response (87), thus influencing the relationship
between different group decision algorithms and signal detection
theory predictions for second-stage decisions.

Generalization to Other Decision-Making Tasks. The implications of
our study and proposed SDT-MIX framework could apply more
generally to any scenario where, from decision to decision, a
varying individual or minority of individuals in the group often has
substantially higher probability of reaching a correct decision
compared with the remaining majority of individuals in the group
(88). One example would involve a panel that is given a battery of
questions spanning multiple domains and a scenario in which,
from decision to decision, a varying minority of panelists often has
high expertise and expresses very high confidence for their de-
cision. Our extended SDT-MIX framework would suggest that
collective integration benefits for this panel might be greater than
otherwise expected from classic signal detection theory, and that a
more demanding averaging of confidences might obtain signifi-
cantly higher group performance than simple majority voting.
Developing quantitative methods to identify scenarios that would
substantially benefit from averaging people’s confidences instead
of simply following the majority decision could be an important
objective for future research on how to improve collective in-
tegration of human decisions in different domains.

Materials and Methods
All data are available on request. SI Materials and Methods has additional
materials and methods.

PC and d′ for MAJ, AVG, and WAVG. Given each algorithm’s binary group de-
cisions across all groups and trials, we computed the algorithm’s hit rate
(proportion of signal trials across all groups in which the algorithm’s binary
group decision is yes) and false alarm rate (proportion of noise trials across all
groups in which the algorithm’s binary group decision is yes). Given that one-
half of the trials were signal and that one-half were noise, the PC of each
algorithm is equivalent to 50% of the algorithm’s hit rate plus 50% of one
minus the algorithm’s false alarm rate. Each algorithm’s hit rate and false
alarm rate were used to estimate the algorithm’s index of detectability as
follows (60, 61): d′=Φ−1ðhit  rateÞ−Φ−1ðfalse  alarm  rateÞ, where Φ−1 is the
inverse cumulative distribution function of the standard normal distribution.

Observers. Twenty undergraduates at the University of California, Santa
Barbara volunteered or participated for course credit. All observers ran in-
dividually but saw the same images. Each observer ran in the search task first
followed by the single-location task on a different day. Observers were
13 women and 7 men between 19 and 23 y old, except for one who was 28 y.
One additional observer was omitted from the analyses, because his or her
performance in the single-location task was close to chance. All observers
were naïve to the purpose of the study. Procedures approved by the Human
Subjects Committee at the University of California, Santa Barbara, were
followed, and informed consent was obtained from all observers.

Eye Tracking. The gaze position of the observer’s left eye was recorded at 250
Hz using a Desktop Mount EyeLink 1000 system (SR Research Ltd.). A cali-
bration procedure was conducted at the start of each session using a nine-
point grid system. The observer was allowed to recalibrate the eye tracker at
any time. Saccades were classified as events in which eye velocity was higher
than 35°/s and eye acceleration exceeded 9,500°/s2.

Yes–No Signal Detection Task. The observer was informed that the target (a
Gabor luminance patch) would be present in 50% of the trials. In the single-
location task (Fig. 1C), the observer responded whether there was a target in
the middle of the black square [known location paradigm (89)]. In the search
task (Fig. 1D), the observer responded whether there was a target anywhere
in the image [spatial uncertainty paradigm (89)]. The image for each trial
was presented for 2,000 ms. The observer responded yes (i.e., target present)
or no (i.e., target absent) by clicking on an eight-point confidence scale,
where eight indicates a very high confidence that the target was present
and one indicates a very high confidence that the target was absent. The
eight confidence ratings appeared from left to right in color-coded boxes.
The boxes for one through four were colored red to indicate no, and the
boxes for five through eight were colored green to indicate yes.
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Feedback. Response feedback was provided by lightly shading the four boxes
that counted as correct responses for that trial (one through four for noise
trials and five through eight for signal trials). In addition, if it was a signal trial,
the stimulus was reshown for 1,500 ms with a small blue circle (0.672° di-
ameter) around the target, so that the observer could learn and remember
what the target looked like [signal known exactly paradigm (90, 91)].

Stimuli. The stimuli were created and displayed using MATLAB and the
Psychophysics Toolbox libraries (92, 93). Each stimulus was an 8-bit gray-scale
image that subtended ∼27.72° × 22.33° and covered the entire 37.5- × 30-cm
display (Barco MDRC-1119 LCD monitor; viewing distance = 76 cm; width ×
height resolution = 1,280 × 1,024 pixels; 1 pixel ∼ 0.022°). The display was
linearly calibrated to a mean luminance of 55.17 cd/m2, with a minimum
luminance of 0.07 cd/m2 and a maximum luminance of 110.27 cd/m2, and the
ambient room lights were turned off.

Each image contained distinct additive luminance white noise (μ =
55.17 cd/m2; σ = 8.61 cd/m2; noise rms contrast = σ/μ = 0.156). The target, when
present, was a vertically oriented sinusoidal luminance grating (spatial fre-
quency = six cycles per 1°) enclosed in a Gaussian envelope (spatial SD = 0.12°).
This luminance patch, known as a Gabor, was placed at a random location in
the image. The center of the Gabor was restricted to be at least 4° away from
the center of the image and at least 1.5° away from the edges of the image.

The energy of the signal (E) is defined as the sum of the squared luminance
values of the entire Gabor as follows (94): E=

PP
Sðx, yÞ2, where S(x,y) is the

luminance value of the Gabor at each pixel location. The SNR is the distance
in SD units between an ideal observer’s respective decision variable distri-
butions for target-present images and target-absent images. For white
noise, it can be calculated from the signal and noise as follows (63, 95):
SNR= root  signal  energy=noise  SD=

ffiffiffi
E

p
=σ.

The SD of the white noise was the same in both tasks (σ = 8.61 cd/m2). The
energy of the signal was manipulated between tasks by changing the con-
trast of the target. The peak contrast of the Gabor was 8% for the single-
location task (E = 910.38 cd/m2; SNR = 3.5) and 18% for the search task (E =
4,608.8 cd/m2; SNR = 7.88).

In the search task, the location of the target was unknown to the observer.
In the single-location task, the image contained a black square (1.5° × 1.5°) to
indicate where the target might be as follows: during signal trials, the
square was centered on the Gabor; during noise trials, the square was placed
at a random location following the restrictions of where the center of the
Gabor could appear during signal trials (at least 4° away from the center of
the image and at least 1.5° away from the edges of the image).

Familiarization. All observers saw the same 100 example images in different
random order. Unlike the practice and experimental images (see below), the
target was present in 100%of the example images. The example images were
distinct from the practice and experimental images but generated the same
way. Observers’ eyes were not tracked, and they did not make any re-
sponses. To illustrate where the target could appear (see above), the ex-
perimenter pointed to the edges and the center of the display during the
first few examples and informed the observer that the target would never
appear near the edges or the center of the image.

Each image was shown for 2,000 ms, after which a small blue circle (0.672°
diameter) appeared to indicate where the target was located. The small blue

circle was redundant with the black square in the single-location task (be-
cause the target was present in all of the example images), but we wanted
to minimize the differences between the procedures of the two tasks. After
the small blue circle appeared, the image remained on the display until the
observer pressed a key to see the next example.

Practice Trials. All observers saw the same 50 practice images in different
random order. The target was present in 50% of the practice images. The
practice images were distinct from the experimental images but generated
the same way. The practice trials were run in a single block before the ex-
perimental blocks, and observers were informed that the first block was
practice. Observers’ eyes were tracked, and they responded using the eight-
point confidence scale. The experimenter explained the trial procedure (see
below) during the first few practice trials.

Experimental Trials. All observers saw the same 500 experimental images in
different random order. The target was present in 50% of the experimental
images. Observers’ eyes were tracked, and they responded using the eight-
point confidence scale. The experimental images were divided into 10 blocks
of 50 trials (for a total of 11 blocks including the practice block). Observers
were encouraged to take short breaks between blocks.

Trial Procedure. The display was set to its mean luminance with a central
fixation cross. Each trial began by pressing a key. After pressing the key, the
observer had to maintain fixation within 1.1° of the fixation cross for a
random delay of 500–1,000 ms before the onset of the image. This ran-
domness was done to avoid anticipatory saccade planning to where the
target could appear. If the observer did not maintain fixation on the central
cross for the required amount of time, a message saying “broken fixation”
would appear, and the observer had to press the key again to restart
the trial.

After fixation was maintained for the required amount of time, the central
cross would disappear to indicate that the image had appeared, and the ob-
server was allowed to freely move his or her eyes. The image was shown for
2,000ms before disappearing. The display was then reset to its mean luminance,
and the eight-point confidence scale appeared in a random location. This
randomness was done to avoid anticipatory eye movements to the confidence
scale while the image was still shown. To respond, the observer clicked on his or
her confidence rating for that trial and received immediate feedback as men-
tioned above. The observer cleared the response feedback by pressing a key. If it
was a signal trial, the observer received additional feedback by reshowing the
image with a circle around the target for 1,500 ms as mentioned above.
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